Banking on Forest

Hao Zhao (Durham)

Joint with Xian Gu (Durham), Felix Irresberger (Durham), Yun Zhu (St. John's)

GRASFI PhD Workshop University of Edinburgh

October 23, 2025

Deforestation of the Amazon rainforest

•00000

- Drivers: Cattle ranching & sugarcane, illegal logging, and agriculture

Sources: (1) Council on Foreign Relations; (fig 1) PARALAXIS on Shutterstock; (fig 2) Erick Caldas Xavier (Wikimedia Commons)

Motivation

January 2025 Southern California wildfires

• \$135-270B economic losses; 16,000 structures destroyed; agricultural damage view case

Sources: Euronews; Globaledge; Urbanland; Moody's; IQAir; (fig 1) Charles V Payne/X; (fig 2) woodlandsonline; (fig 3) Wikimedia Maps

Ostober 2025 2 / 27

Forest loss and economy

- Wildfires (natural disaster): 23% of global forest loss
 - Hard to prevent (e.g., McWethy et al. 2019 Nat. Sustain.)
 - Threats to economy (e.g., 2018 CA wildfires: 1.5% state GDP damages)
 - Affect firm operation, even being insured (e.g., stated in SEC filings)
- **Human-induced factors**: 77% of global forest loss
 - A deliberate change for economic growth
 - Main factors: commodity, agriculture, forestry, urbanization¹
 - Driver for carbon emissions (e.g., Houghton et al. 2012 Biogeosciences)
 - Regulation: European Union Deforestation Regulation. Proposed 2019; enforced 2023
 - Non-mandatory framework: e.g., REDD+ UNFCCC (2013); OECD-FAO (2016)

¹Classification of forest loss follows Curtis et al. (2018 *Science*)

What can banks do to mitigate deforestation risks?

• Motivation: banks as a main debt holder in the capital market:

- Sensitive to firms' operation/performance
- Climate change → firm losses → higher credit risk

• To mitigate *physical risk*:

- Reallocate lending to non-affected firms
- 2 Continue lending but increase pricing (e.g., Javadi & Masum 2021 *JCF*)

To mitigate transition risk:

- ① Divest from "brown" & reallocate to "green" (e.g., Kacperczyk & Peydró 2021 WP)
- ② Continue lending to "brown" → support green transition or increase pricing (e.g., Ivanov et al. 2024 RFS)
- We focus on intensive margin instead of extensive (*divestment*)

Main findings

- Question: How banks mitigate the physical risks and transition risks from forest loss
 - Assumption: forest-dependent firms are more affected
- Loan pricing
 - For realized physical risks: after fire-induced forest loss, loan spreads for forest-dependent firms increase by 12–65 bps compared to other firms
 - For transition risks: after human-induced forest loss, forest-dependent firms get higher spreads after the development of the EU Deforestation Regulation (more for EU banks and firms)

Main findings (cont.)

- Mechanism: forest loss and firm operation
 - Wildfires disrupt operations of dependent firms (\$\dploau24.5\% operating cash flow)
 - Human-induced loss has no short-term effect, consistent with planned expansion
- Ex-post outcome: green transition after getting loans
 - Firms that get loans after human-induced loss shift to inputs from countries with lower deforestation risk (responsible sourcing)
 - Evidence of reforestation
 - Evidence of divestiture of pollutive plants

Data and sample overview

• Key data:

- Forest loss (geospatial): GLAD (Hansen et al. 2013 *Science*, Tyukavina et al. 2022 *Front. Remote Sens.*)
- Forest dependency: ENCORE (UNEP)
- Syndicated loans: DealScan
- Supply chains & firm data: Compustat, Refinitiv
- Reforestation (NDVI): NASA MODIS
- Deforestation disclosures: Refinitiv AdvFil
- Plant divestitures: EPA TRI, SDC M&A

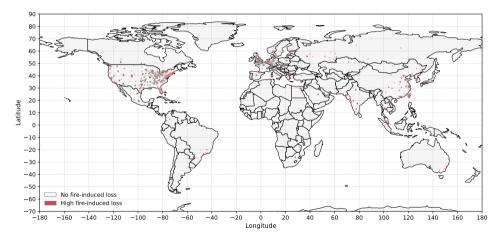
Sample (loan-level):

- 2002–2024; 42,590 obs (large-share lead arranger deal earliest tranche level)
- 6,329 borrowers; 45% U.S., 13% EU, 75% OECD
- 1,298 lenders; 25% U.S., 17% EU, 60% OECD

Measures for firm-level forest loss

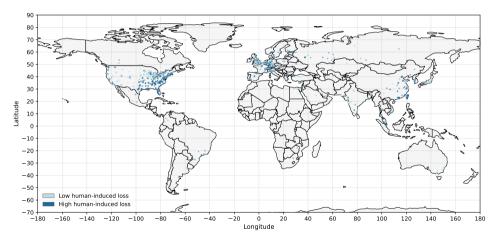
- GLAD laboratory (University of Maryland) geospatial data
 - High-resolution (30-meter) annual data: gross forest cover loss (Hansen et al. 2013 *Science*)
 - From 2000 to 2023, derived from Landsat (NASA) time-series imagery
 - *Definition* of loss: stand-replacement disturbance (forest to non-forest state)

Measures for firm-level forest loss


- Our analyses:
 - (1) Identify firm headquarters' geographic coordinates from address information
 - (2) For each firm, use *Google Earth Engine* to get annual gross forest loss area (in km²) within 10km around a firm
 - (3) Classify two types of loss: (a) forest loss from fires; (b) forest loss from human activities (the loss area not induced by fires)

Main drivers (global)	% of total forest loss	If external to firms	Our variables at firm-level
Wildfire	23%	Yes	Fire loss
Forestry	26%	No	Human-induced loss
Shifting agriculture	24%	No	Human-induced loss
Commodity-driven	27%	No	Human-induced loss
Urbanization	<1%	Unknown	Human-induced loss
Total	100%		Annual gross forest loss

Source for percentages: Classifying drivers of global forest loss, Curtis et al. (2018 Science)


Fire-induced forest loss of the sample firms in 2023

Note: The circles on the maps are visually enlarged, and do not represent the actual geographical areas

Human-induced forest loss of the sample firms in 2023

Note: The circles on the maps are visually enlarged, and do not represent the actual geographical areas

Forest dependency of production processes

- Goal: measure how much firms' production directly relies on forests
- *Reason*: forest-dependent firms are more exposed/related to forest loss
 - e.g., large deforestation happened near forestry vs. tech firms
- **ENCORE** data framework:
 - $\bullet \ \ Natural \ capital \rightarrow E cosystem \ services \rightarrow Industry \ production \ processes$
 - *Example*: forests \rightarrow plant materials \rightarrow forestry production
 - Dependency rating: very low to very high (0–5)
- *Dependency* (our main measure):
 - Select forest-linked ecosystem services → Aggregate at industry (GICS-production process)
 - → Match to borrowers via 2-digit SIC
- Weighted dependency (account for country deforestation):
 - $Dependency \times (1 + normalized country-level forest loss)$
 - = 1 for highest-deforestation country; = 0 lowest

Baseline model: Linking forest loss and loan pricing

- Hypotheses: Banks care about forest loss only when—
 - Fire-induced loss triggers realized physical risk (e.g., disruption of raw materials)
 - **Human-induced loss** *triggers* transition risk (e.g., deforestation-related policy scrutiny)
- Identification logic:
 - Local variation in forest loss over time (contrasting fire vs. human-induced loss)
 - Dependency varies by industry (minimal physical&transition risk if no dependence)
- **Specification** (simplified for presentation):

Yield spread_{b,f,t} ~
$$\beta_3$$
 (Dependency_i × Loss_{f,t-1}) + Control variables +FE differential pricing (fitted curve)

• If $\beta_3 > 0$: yield spread rises more when forest loss increases risk for high-dependency firms

October 2025 14/2

Baseline results

At *Dependency* mean (0.91): 1 km^2 fire loss $\rightarrow 15$ bps higher yield spread

Dependency measures		Weighted dependency				
	(1)	(2)	(3)	(4)	(5)	(6)
Dependency measure	-0.00745	-0.00484	-0.00721	0.0000886	0.0703	-0.0359
	(0.0740)	(0.0761)	(0.0758)	(0.0476)	(0.103)	(0.0605)
Fire loss	-0.235*		-0.238*	-0.246*	-0.238	-0.327*
	(0.134)		(0.136)	(0.129)	(0.143)	(0.165)
Anthropogenic loss		0.0349	0.0373	0.0570	0.0574	0.0265
		(0.0439)	(0.0432)	(0.0355)	(0.0480)	(0.0295)
Dependency measure \times <i>Fire loss</i>	0.425**		0.424**	0.415**	0.527**	0.586**
	(0.176)		(0.183)	(0.177)	(0.230)	(0.261)
Dependency measure × Anthropogenic loss		0.00219	-0.00143	-0.0115	-0.0330	-0.0140
		(0.0279)	(0.0288)	(0.0278)	(0.0377)	(0.0290)
High-level industry FE	No	No	No	Yes	No	No
Bank × firm country FE	No	No	No	No	No	Yes
Adjusted R-squared	0.342	0.341	0.342	0.357	0.342	0.515

Note: (1) Obs: 42,590; (2) Year FE/Loan controls/Firm controls/Bank controls/Constant: YES

Robustness: Fire percentile cut-offs

Yield spread_{b,f,t} ~ β_3 1[Dependency_i > median] × 1[Fire loss_{f,t-1} > cutoff]

EU Deforestation Regulation: Transition risk

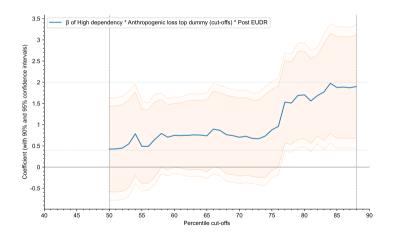
- **Goal:** Zero deforestation and degradation
 - Ban forest-to-agriculture conversion and unsustainable wood sourcing
- Due diligence: Geolocation data, risk assessment and mitigation required
- Timeline:
 - July 2019: European Commission proposed regulatory framework
 - June 2023: Entry into force, with 12-month additional phasing-in period
- Scope: all firms operating/trading in the EU (products traced to origin)
- Identification logic: EUDR increase transition risks for high-deforestation-risk firms
- **Specification** (loan-level; simplified):

Yield spread_{b,f,t} ~
$$\beta_7$$
 (Dependency_i × Loss_{f,t-1}) × 1 [Period > July 2019]

differential pricing (fitted curve)

post-EUDR effect

• If $\beta_7 > 0$: deforestation transition risk priced in after EUDR



EUDR policy shock: Findings

- Global firm sample view table
 - Include all firms, since EUDR applies to any firm operating in the EU
 - Post-EUDR: forest-dependent firms with human-induced loss face higher yield spreads
 - No effect for fire loss \rightarrow reinforces transition-risk pricing channel
- EU lender–EU operator subsample → view table
 - Post-EUDR: Stronger differential pricing, with higher magnitude than global sample
 - No pricing response among non-EU lender–firm pairs
- Policy phase: Framework vs. Enforcement View table
 - Pricing sharpens after enforcement (June 2023), compared to post-framework (July 2019)
 - Most visible for EU bank–EU firm pairs

Robustness: Human-induced loss percentile cut-offs

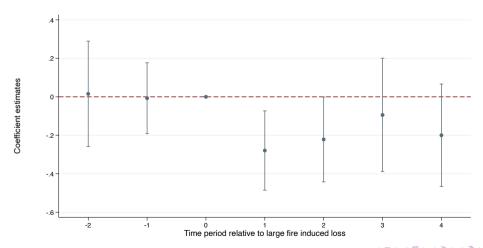
Credit supply side: Do committed banks price forest risk more?

- *Hypothesis*: Committed banks (those mentioning deforestation in disclosures) are more responsive to transition risk exposure
- **Design:** Compare four groups: committed vs. non-committed banks, before vs. after EUDR, and re-estimate *Dependency* × *Anthropogenic loss*
- Findings: view table
 - Post-EUDR, committed banks charge 17.6 bps higher spreads to forest-dependent firms (at mean 0.9) following 1 km² human-induced forest loss
 - No differential pricing pattern for non-committed banks
 - Suggests active pricing role from the credit supply side in response to transition risk

Borrower side: Does firm commitment mitigate pricing?

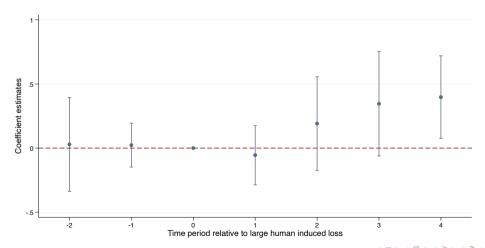
- *Hypothesis*: Firms that disclose deforestation issues may be seen as more risk-aware and committed to mitigation
- **Design:** Compare four groups: committed vs. non-committed firms, before vs. after EUDR, and re-estimate *Dependency* × *Anthropogenic loss*
- Findings: view table
 - Post-EUDR, only non-committed forest-dependent firms face 25.2 bps higher spreads following human-induced forest loss
 - No differential pricing pattern for committed firms
 - Results are consistent when using E-score as an alternative commitment proxy

Mechanism: Forest loss and firm operation


- Motivation: Wildfires can damage assets & operations (e.g., Portugal 2017 wildfire, Lopes and Póvoa 2022 J. Real Estate Finance Econ.)
- **Question:** Do banks price *real disruptions* or just *perceived risk*?
- Design:
 - Compare firm operating cash flow before/after large forest loss event
 - Top dependency = 1 if in top 30% by forest dependency
 - Post large loss = 1 if after large fire or human-induced event

Findings:

- Fire loss \rightarrow cash flow declines for forest-dependent firms
- Anthropogenic loss \rightarrow no immediate operational impact
- Suggests banks price fire loss due to liquidity risk, not just perception



Dynamic effects of large fire loss on firm cash flow

Dynamic effects of large human-induced loss on firm cash flow

Ex-post: Do loans facilitate green transition?

- Hypothesis: If a high-transition-risk firm (from large human-induced loss) get loans → banks and firms might both engage in green transition → (1) Production shift (away from deforestation inputs); (2) Reforestation; (3) Divestiture of pollutive plants
 - No effect expected after fire-induced loss (firms do not have different effect of loan engagement in mitigating transition risk)
- **Specification** (firm-event level; simplified):

Outcome_{f,t+\tau} ~ $\beta_3 \mathbb{1}[t > \text{Large anthropogenic loss event}] \times \mathbb{1}[\text{Get loan at } t \text{ or } t+1]$

loan effect after large deforestation event

- If $\beta_3 > 0$: loan facilitates post-deforestation adjustment
- Subsample or interaction tests for high *Dependency* (more exposed)
- $\tau > 1$: restrict timelines to: loss event \rightarrow if get loan \rightarrow future outcomes
- Balanced 3-year estimation window; exclude overlapping events

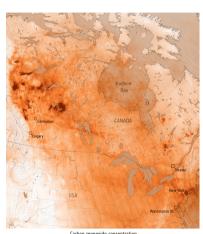
Ex-post outcomes and findings

- Production sourcing view details view table
 - Supply dependency: share of inputs from forest-dependent suppliers → Firms maintain forest inputs no broad production shift
 - Country-adj supply: inputs from forest-dependent suppliers in high-deforestation-risk countries → Firms redirect toward responsible sourcing
- Environmental recovery view table
 - NDVI (NASA) greenness index, , or disclosed reforestation offset programs: →
 Reforestation increases after loans stronger for high-dependency firms
- Asset divestiture view table view discussion on selection and alternative measure
 - Divestiture of pollutive plants: pollutive facilities sold after loan receipt → Firms divest forest-dependent pollutive plants post-loan

Key takeaways

- Forest-dependent firms face higher loan spreads following fire-induced forest loss
- Human-induced deforestation only leads to higher spreads after the EU deforestation regulation framework is proposed
- Loan recipients with high transition risks respond by:
 - Reducing reliance on forest-based inputs from high-deforestation-risk countries
 - Engaging in reforestation efforts (e.g., NDVI or disclosure-based evidence)
 - Divesting pollutive forest-dependent plants
- Results highlight banks' role in compliance and enabling green transition

Further discussions: Selection, and alternative outcome measure


- Selection into loan receipt
 - Question: what if firms with certain features are also more likely to get loans?
 - Univariate test: the book value of debt of firms that receive bank syndicate loans in a year is significantly higher
 - Selection model: firm-level forest dependency and human-induced forest loss are not significantly correlated with loan receipt (Probit: *If get loan* ~ *Firm characteristics*)
 - Results remain unchanged after controlling for IMR
- Alternative measure of reforestation Back to summary
 - Potential concern: MODIVS NDVI is not a direct measure of firms' actual engagement in reforestation projects
 - Alternative measure: firm disclosure of reforestation activities (keyword dictionary derived from voluntary "Forestry Land Use" carbon offset classifications)
 - Filing coverage: ESG reports, SEC filings, press releases, etc.
 - Findings are robust

Case 1: Impact of 2023 Western Canada Wildfires on Canfor Corp

- Industry: Forest products; Country: Canada
- Wildfires disrupt pulp & lumber in Alberta & B.C.
 - Q2 2023 loss: \$43.9M (vs. \$373.8M profit in Q2 2022)
 - Q3 2023 lumber production down 34%
- Operational Disruptions
 - 3-week shutdown at Fox Creek, Alberta
 - Severe fiber shortages, haul & harvest delays
- Financial Impact
 - Revenue down to \$1.45B (from \$2.17B YoY)
 - B.C. port strike worsens supply chain
- Outlook
 - Wildfire risks persist into late 2023
 - Long-term fiber supply is uncertain

Case 2: Deforestation of JBS

- Industry: Meat and food processing; Country: Brazil
- Key impact
 - JBS linked to large-scale deforestation in Brazil for livestock expansion
 - 1.5M hectares deforested by indirect suppliers in 15 years (size of Northern Ireland)
 - Pantanal wetlands impacted, violating environmental regulations
- Supply Chain & Compliance Failures
 - JBS failed to trace indirect suppliers, despite available technology
 - $\bullet \ \ Non-compliance \ with \ EU \ Deforestation \ Regulation \ (EUDR) \rightarrow facing \ EU \ trade \ restrictions$
- Consequences & Outlook
 - EU sanctions & reputational damage threaten exports
 - Growing pressure from investors & regulators for accountability
 - Unclear if JBS will meet 2025 zero-deforestation goal Back to summary

Policy shock: The introduction of the EUDR

Loan sample: we start with all firms, as EUDR applies for any firm operating in the EU

Loss measure	Fire	loss	Anthropo	Anthropogenic loss	
	(1)	(2)	(3)	(4)	
Dependency measure	-0.0257	0.0469	-0.0194	0.0599	
	(0.0721)	(0.0980)	(0.0756)	(0.104)	
Loss measure	-0.249	-0.241	0.0622	0.0818	
	(0.147)	(0.150)	(0.0508)	(0.0532)	
Post EUDR	0.0115	0.0558	0.0946	0.148	
	(0.110)	(0.110)	(0.140)	(0.143)	
Dependency measure × Loss measure	0.455**	0.551**	-0.0184	-0.0519	
	(0.202)	(0.248)	(0.0374)	(0.0427)	
Dependency measure \times Loss measure \times <i>Post EUDR</i>	-0.588	-1.554	0.261*	0.416**	
	(2.136)	(3.066)	(0.126)	(0.185)	
Observations	42,590	42,590	42,590	42,590	
Adjusted R-squared	0.342	0.343	0.343	0.343	

Note 1: Year FE/Loan controls/Firm controls/Bank controls/Constant: YES

Note 2: Dependency measure: Col (1) & (3) Dependency; Col (2) & (4) Weighted dependency

Note 3: Other two-way interaction terms are not presented here

EUDR Country heterogeneity: EU bank-EU operators lending pair

Sample includes borrowers operating in the EU (suppliers to EU & EU firms)

(1) -0.126* (0.0723) 0.0696	(2) -0.135 (0.122) -0.0716	(3) -0.149 (0.149)	(4) -0.144 (0.200)
(0.0723) 0.0696	(0.122)	(0.149)	
0.0696	(/	(/	(0.200)
	-0.0716	0.0000	
	-0.0710	0.0833	-0.111
(0.187)	(0.220)	(0.191)	(0.244)
0.339**	-0.952**	0.365*	-0.891**
(0.161)	(0.359)	(0.181)	(0.378)
0.0412	0.0624	0.0426	0.158
(0.176)	(0.236)	(0.298)	(0.415)
1.686**	-0.423	2.568*	-1.016
(0.643)	(1.382)	(1.168)	(2.796)
3	.0201*	2.	.7673*
(0	0.0962	
6,171	5,671	6,171	5,671
0.471	0.441	0.469	0.440
	0.339** (0.161) 0.0412 (0.176) 1.686** (0.643) 3 (6,171 0.471	0.339** -0.952** (0.161) (0.359) 0.0412 0.0624 (0.176) (0.236) 1.686** -0.423 (0.643) (1.382) 3.0201* 0.0822 6,171 5,671	0.339** -0.952** 0.365* (0.161) (0.359) (0.181) 0.0412 0.0624 0.0426 (0.176) (0.236) (0.298) 1.686** -0.423 2.568* (0.643) (1.382) (1.168) 3.0201* 2. 0.0822 0 6,171 5,671 6,171 0.471 0.441 0.469

Note 1: Year FE/Loan controls/Firm controls/Bank controls/Constant: YES

Note 2: Dependency columns (1) & (3); Weighted dependency columns (2) & (4)

Note 3: Other two-way interactions are not presented

Danandant naviable, Vield annead

EUDR: Phase 1 vs Phase 2

- *Post EUDR (phase 1)*: = 1 if the time is between the first deforestation policy framework (23 July 2019) and enforcement (29 June 2023), = 0 otherwise
- Post EUDR (phase 2): = 1 after entering into force (29 June 2023), = 0 otherwise

Dependent variable: Yield spread				
Bank–Firm pair	EU pair	Non-EU pair	OECD pair	Non-OECD pair
	(1)	(2)	(3)	(4)
Dependency	-0.124**	-0.00149	-0.233**	0.0829
	(0.0581)	(0.0791)	(0.111)	(0.103)
Anthropogenic loss	0.133	0.0504	0.137	0.0672
	(0.206)	(0.0444)	(0.206)	(0.0495)
Dependency \times Anthropogenic loss \times <i>Post EUDR (phase 1)</i>	2.260***	0.288	4.201***	0.407
	(0.642)	(0.195)	(1.205)	(0.255)
Dependency \times Anthropogenic loss \times <i>Post EUDR (phase 2)</i>	4.608***	0.186	8.662**	0.333
	(1.608)	(0.113)	(3.112)	(0.251)
Observations	5,518	37,072	5,518	37,072
Adjusted R-squared	0.481	0.338	0.481	0.338
				. D. L.

Note 1: Year FE/Loan controls/Firm controls/Bank controls/Constant: YES Note 2: Col (1)&(3): Dependency; Col (2)&(4): Weighted dependency

Note 3: Stand-alone time indicators (+sig), two-way interactions, and Chi-sq tests (sig) omitted

Credit supply side: Bank commitment on deforestation

• Committed banks: banks mentioned deforestation in disclosures

Dependent variable: Yield spread							
Bank subsample	Committed	Committed	Non-committed	Non-committed			
Subsample period	Pre-EUDR	Post-EUDR	Pre-EUDR	Post-EUDR			
	(1)	(2)	(3)	(4)			
Dependency	-0.018	0.143	0.040	0.164			
•	(0.067)	(0.112)	(0.089)	(0.104)			
Anthropogenic loss	0.151	-0.282	0.200	-0.227			
	(0.132)	(0.173)	(0.141)	(0.279)			
Dependency × Anthropogenic loss	-0.037	0.196***	-0.061	0.214			
	(0.100)	(0.073)	(0.062)	(0.188)			
Chi-square test	3.7	972	2.1	344			
P-value	0.0	513	0.1	440			
Observations	3,094	2,932	6,626	2,385			
Adjusted R-squared	0.381	0.435	0.278	0.395			
Note 1: Year FE/Loan controls/Firm controls/Bank controls/Constant: YES							

Borrower engagement: Firm commitment on deforestation

- Committed firms: firms that mention "deforestation" in prior-year disclosures
- Robustness: Use E-score to measure firms' green engagement → similar results

Dependent variable: Yield spread				
Firm subsample	Commi	tted firms	Non-com	mitted firms
Subsample period	Pre-EUDR	Post-EUDR	Pre-EUDR	Post-EUDR
	(1)	(2)	(3)	(4)
Dependency	-0.197	0.0686	0.0268	0.163
	(0.185)	(0.149)	(0.0845)	(0.106)
Anthropogenic loss	-0.333	0.00833	0.165	-0.374*
	(0.445)	(0.815)	(0.121)	(0.195)
Dependency × Anthropogenic loss	0.931	0.0956	-0.0322	0.252***
	(0.811)	(0.875)	(0.0697)	(0.0940)
Chi-square test	(1)=(2	0.151	(3)=(4)	6.445**
P-value	0.	698	0.	011
Observations	270	291	9,450	5,026
Adjusted R-squared	0.700	0.562	0.294	0.413
Note 1. Voor EE/I can controls/Eiron	aantuala/Danle	aantrala/Canata	mt. VEC	· Back to summary

Note 1: Year FE/Loan controls/Firm controls/Bank controls/Constant: YES

Ex-post outcome: Production

- Examine whether syndicated loans facilitate transition away from forest dependency
- Supply dependency: Share of inputs sourced from forest-dependent suppliers
 - Captures shift in production structure (overall forest reliance)
- Country-adj supply: Share of inputs sourced from forest-dependent suppliers in high-risk countries
 - Captures responsible sourcing (shift toward lower-risk regions)
- Key idea: If a high-transition-risk firm reduces its deforestation exposure after securing loans, → lenders' engagement role in promoting sustainability
- Empirical design:
 - Post large anthropogenic loss: time indicator 3 years around a large human-induced loss
 - If get loan: = 1 if firm obtains loan in year t or t + 1 (capture loans after loss) Back to summary

Ex-post outcome: Production (*continued*)

Dependent variable	Supply de	ependency	Country-	adj supply
Outcome window (forward)	+3 years	+4 years	+3 years	+4 years
	(1)	(2)	(3)	(4)
If get loan (t or t+1)	0.0593**	0.0634**	0.111**	0.115**
	(0.0273)	(0.0295)	(0.0417)	(0.0440)
Post large anthropogenic loss	0.0423*	0.0396	0.0613	0.0577
	(0.0235)	(0.0243)	(0.0387)	(0.0402)
If get loan \times <i>Post large anthropogenic loss</i>	-0.0426*	-0.0437	-0.0703**	-0.0711**
	(0.0225)	(0.0277)	(0.0250)	(0.0321)
Observations	523	523	523	523
Adjusted R-squared	0.330	0.345	0.349	0.365

Note 1: Year FE/Firm controls/Constant: YES

Back to summary

Note 2: Window restriction: no other large loss event three years around a selected large loss event

Note 3: No production change around large fire loss

Ex-post outcome: Reforestation

- Outcome: NDVI (Normalized Difference Vegetation Index) greenness of vegetation
 - From NASA MODIS, primarily used to determine land use and land-cover change (LULCC)
- Post large anthropogenic loss: = 1 if three years after a large human-induced forest loss
- If get loan: = 1 if a firm obtains a loan in t or t+1 following large loss

Dependent variable: NDVI				
Outcome window (forward)	+1 year	+2 years	+3 years	+4 years
	(1)	(2)	(3)	(4)
If get loan (t or t+1)	-0.224	-0.184	-0.150	-0.0940
	(0.710)	(0.701)	(0.697)	(0.696)
Post large anthropogenic loss	-2.271*	-2.059	-1.918	-1.781
	(1.314)	(1.360)	(1.395)	(1.393)
If get loan \times <i>Post large anthropogenic loss</i>	1.174***	1.215***	1.200***	1.126***
	(0.334)	(0.359)	(0.359)	(0.359)
Observations	4,322	4,322	4,322	4,322
Adjusted R-squared	0.178	0.176	0.170	0.163
				5 1 .

Note 1: Year FE/Firm controls/Constant: YES

Note 2: Window restriction: no other large loss event three years around a selected large loss event

Ex-post outcome: Reforestation (High dependency subsample)

Dependent variable: NDVI				
Outcome window (forward)	+1 year	+2 years	+3 years	+4 years
	(1)	(2)	(3)	(4)
If get loan (t or t+1)	0.727	0.796	0.858	0.928
	(1.053)	(1.045)	(1.044)	(1.053)
Post large anthropogenic loss	-2.230	-1.944	-1.869	-1.745
	(1.662)	(1.690)	(1.708)	(1.684)
If get loan \times <i>Post large anthropogenic loss</i>	1.555**	1.575**	1.595**	1.525**
	(0.593)	(0.620)	(0.632)	(0.646)
Observations	2,303	2,303	2,303	2,303
Adjusted R-squared	0.193	0.189	0.183	0.177
Note 1: Voor EE/Eirm controls/Constant: VI	7 C			▶ Back to summary

Note 1: Year FE/Firm controls/Constant: YES

Note 2: Window restriction: no other large loss event three years around a selected large loss event

Ex-post outcome: Divestiture of pollutive plants

- Examines if firms divest pollutive forest-dependent plants after human-induced loss
- Focus on U.S. public firms with TRI-listed plants; divestiture scaled by 100 (pp change)
- Evidence: Firms receiving loans are more likely to divest forest-linked pollutive assets, especially with high forest dependency

Dependent variable: Divestiture Type of divested plants	Nonze	ro forest depe	ndency	High	forest depend	dency
Outcome window (forward)	+2 yrs	+3 yrs	+4 yrs	+4 yrs		
	(1)	(2)	(3)	(4)	(5)	(6)
Dependency \times Anthropogenic loss \times If get loan	1.095***	1.118***	1.215***	1.090***	1.123***	1.210***
	(0.282)	(0.304)	(0.390)	(0.279)	(0.299)	(0.384)
Observations	7,313	7,313	7,313	7,313	7,313	7,313
Adjusted R-squared	0.0129	0.0198	0.0233	0.0152	0.0223	0.0255
THE TENTE OF THE TENTE					. D.	

Note 1: Year FE/Firm controls/Constant: YES

Note 2: Stand-alone variables and two-way interactions are not presented here

